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Abshract--. The three-dimensional incompressible flow near the stagnation line of a swept cylindrical 
surface is studied. The method of matched asymptotic expansions is used to obtain an extension of the 
solutions of the Prandtl boundary-payer equations. i.e. a second approximation to the full Navier-Stokes 
equations. The second-order effects due to surface curvature and displacement on the velocity com- 
ponents. pressure. shear stress. heat transfer. and mass transfer are determined. 

It is shown that the effects of longitudinal curvature and displacement are negative; i.e. they lead to 
decreasing values of the boundar~layer characteristics: wall shear. heat transfer. and mass transfer. This 
behavior results from the stretching of the boundary layer normal to the wall by centrifugal forces due to 
the convex surface curvature. Increasing mass injection at the waU increases all second-order effects. This 
results from the thickening in the boundary layer produced by injection. Only the curvature effect on wail 
concentration exhibits the opposite behavior. It increases the wall concentration and this increase is 

diminished by injection. 

NOMENCLATURE 
&?I 1 

thickness ratio of ellipse {see 
equation (25b)} ; 
species concentration ; 
dimensionless concentration func- 
tions, defined in equation (10) ; 

functions defined in equation (32) ; 

coefficients defined in equations 
(67)-(72),i= 1,2 ,..., 6; 
mass-transfer parameter defined 
in equation (38); 

P(V) 
P&if 
PA?) i 
P,. P,, 

functions defined in equation (28); 
Pr. 

65 

functions defined in equation (31); 

functions defined in equation (29); 

thermal conductivity ; 
Lewis number = Sc/Pr; 
mass transfer by diffusion [see 
equation (79b)] ; 

functions defined in equation (30) ; 

dimensionless pressure functions 
defined in equation (8); 
Prandtl number; 
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total head = p, + (p/2)UL; 
heat transfer [see equation (79a)] ; 
radius of curvature at the stagna- 
tion line (see Fig. 1) ; 
Reynolds number = U,RIv; 

Schmidt number ; 
temperature ; 
dimensionless temperature func- 
tions defined in equation (9) ; 
free-stream velocity component 
perpendicular to the cylinder 
generators (see Fig. 1); 
dimensionless velocity functions 
defined in equation (7a) ; 
velocity component in xdirection ; 
constants, defined by equation 

(24b) ; 
free-stream velocity ; 
dimensionless velocity functions 
defined in equation (7b); 
velocity component in ydirection ; 
free-stream velocity component 
parallel to the cylinder generators 
(see Fig. 1) ; 
dimensionless velocity functions 
defined in equation (7~) ; 
longitudinal coordinate (see Fig. 

1); 
dimensionless coordinate = x/R ; 

coordinate perpendicular to the 
wall (see Fig. 1); 
dimensionless coordinate = y/R ; 
coordinate parallel to the cylinder 
generators. 

Greek symbols 

B1, constant defined in equation (43a) ; 

VT dimensionless variable of the inner 
expansion, defined in equation 
(26); 

5 curvature at the stagnation line 
= l/R; 

v, kinematic viscosity ; 

43 sweep angle ; 

Subscripts 
1, 
2, 

2 

C?’ 

W, 
x, 
Z, 

PRANDTL'S 

density ; 
shear stress at the wall ; 
dimensionless vorticity functions, 
defined in equations (17) and (19). 

first-order outer expansion ; 
secondorder outer expansion ; 
surfacecurvature effect ; 
displacement effect ; 
free-stream condition ; 
values without second-order 
effects ; 
wall values ; 
longitudinal direction x ; 
transverse direction z. 

1. INTRODUCTION 

boundary-layer theory provides a I 

relatively accurate description of a remarkable 
number of simple flow situations. However, 
many flows that occur in modern technology 
possess characteristics that cannot be treated 
within the simple framework of the Prandtl 
approximation. It is necessary, for these more 
complicated flows, to seek approximate solu- 
tions to the Navier-Stokes equations that are 
of higher accuracy than the classical or Prandtl 
approximation. This extension of classical 
boundary-layer theory is called higher-order 
boundary-layer theory, an excellent critical 
review of which was recently given by Van 
Dyke [l]. 

If Prandtl’s theory is regarded as the first 
approximation to the solution of the Navier- 
Stokes equations, then the retention of terms 
involving surface curvature and the considera- 
tion of the interaction of the boundary layer 
with special features of the external flow, such 
as displacement and vorticity, represent the 
structure upon which the second-order cor- 
rections to the Prandtl approximation can be 
formulated. The method of matched asymptotic 
expansions is particularly useful in developing 
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higher approximations to the boundary layer, 
and Van Dyke has worked out the second-order 
solutions for incompressible [2,3] and com- 
pressible [4] flows. In fact, higherorder boun- 
dary-layer theory has received great attention 
from many authors, and a comprehensive biblio- 
graphy may be found in Van Dyke’s review. 

According to singular perturbation theory, 
the classical or Prandtl boundary-layer equa- 
tions are nonlinear, but all the higher-order 
approximations are linear. Rott and Lenard [5] 
showed that the second-order correction can be 
separated into several effects, each associated 
with a particular physical interpretation. These 
have been divided into terms representing longi- 
tudinal and transverse curvature (terms re- 
tained within this order of approximation to the 
Navier-Stokes equations) and terms associated 
with the boundary condition at the outer edge of 
the boundary layer and at the outer flow. These 
latter effects are due to the displacement of the 
outer flow by the boundary layer and the varia- 

tion of vorticity and stagnation temperature in 
the outer flow. Other effects, such as the impod- 
tion of mass transfer at the surface, threedimen- 
sionality, and the inclusion of a binary gas have 
not been treated heretofore. We intend to discuss 
these additional effects for the case of a stagna- 
tion line on a swept cylinder. In this study, we 
restrict ourselves to incompressible flow. 

In certain cases of practical interest, the 
boundary layer may be thickened by viscous 
heating, transpiration cooling, or ablation. In 
the case of a body with surface curvature, such 
as a cylinder, we must include appropriate terms 
in the solution. In addition to this, even in the 
absence of vorticity and of variation of stagna- 
tion temperature in the outer flow, we must 
consider the displacement of the outer flow by 
the boundary layer. 

We treat the flow of a binary gas near the 
stagnation line of a swept cylinder. The free 
stream is uniconstitutive, with constant velocity 
l’ having components U, = I’ cos 4 (see Fig. 

FIG. 1. Coordinate system for the swept cylinder 
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1) and W, = 1/ sin & (parallel to the generators 
of the cylinder). A gas is injected at the surface 
of the cylinder and diffuses through the boundary 
layer. The method of matched asymptotic 
expansions is employed to obtain second-order 
solutions that include the effects of longitudinal 
curvature and displacement. By “longitudinal 
curvature” we mean the surface curvature with 
respect to the flow in the x-y plane. Our solu- 
tions will show, to the second order, the effect 
of mass transfer on wall shear and heat transfer 
in the three-dimensional boundary layer near 
the stagnation line of a swept cylinder. 

2. GENERAL THEORY 

2.1 Basic equations 
We begin with the Navier-Stokes equations 

for an incompressible binary fluid with constant 
properties. Figure 1 shows the coordinate 
system for the flow considered here ; i.e. the 
stagnation-line region on a swept cylinder. The 
velocity components in the x, y and z directions 
are U, u and w, respectively. The static pressure 
is p, the temperature is 7: and the concentration 
is given by C. When the free-stream velocity is 
low and the sweep angle is smal1, the viscous 
heating in the energy equation due to the w 
velocity component may be neglected. In addi- 
tion, the Schmidt number SC is taken equal to 
the Prandtl number, Pr ; i.e. the Lewis number 
is equal to unity. The equations for steady flow 
may then be written 

au a 
a.y + T&1(1 + KY)tcj = 0 (1) 

K2 2K all 
-(1+u++-2--- (1 + Ky) as 1 (24 

1 

= ” 
CL+-+ 5 a% ti at2 

(I + rcy)2 a2 ayz i + KY ay 
x2 2K au 

--p-c - --7- 
(1 + lcJY (I + KY)- ax 1 f2t-O 

1 aw aw 
---"-++~~ i + KY ax 

[ 

1 a% d2~v = &I Ice (24 
(I + KY)* S + p + i + ICY ay 1 

1 aT aT 
I + KY ax &l- + % 

V 

[ 

2 2 

=_- __‘_!_z+!z+~_ 
K aT 

Pr (1 + KY)* ax2 ay2 i + KY aJ, I 
(3) 

1 ac ac 
-----u-+ ,,% i + Ky ax 

V 

[ 

1 a2c a2c 
=sc (l+?cy)GZ4c:yi 

K ac + -._I_ 
I + tiy ay 1 . 

(4) 

Although the flow is independent of z, it is three- 
dimensional in the sense that it includes the 
three velocity components. The unknowns in 
this system of equations are U, II, w, p, Tand C. 
These six equations, together with the appro- 
priate boundary conditions, will be sufficient 
to obtain a solution, 

The boundary conditions for equations (l)-(4) 
are at the wall (y = 0): 

u=o 

27 = 0, 

w=o 

T= T, i 
far from the body (y --+ co): 

J(u” -t- t?) = u, 
\I’ = w, 
P = Pm 

T= T, 

c = 0. 

(5) 

(6) 
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The mass transfer at the wall is given by the 
boundary conditions for 1~ = II,. It should be 

noted that, for a binary gas, the Eckertt 
Schneider condition, which equates the con- 

vective flow of a component toward the wall 
with the diffusive flow away from the wall, links 

the concentration, the concentration gradient, 
and the normal velocity at the wall : 

c = C,(X,j) 
- - 

+ ,&(X.y) + . . (10) 

Substituting these expressions into equations 

(l)(4) and collecting terms of the same order, we 
obtain for : 
the continuity equation : 

O(1) (1 la) 

O(l/jRe) 2. + $[(l + Y) J'zl = 0 (lib) 
)\.’ 

(ha) 

We prescribe the free-stream velocity V, the 

radius of curvature R, and the sweep angle &, 
and seek the two components of the wall shear 

r, and rZ, the heat transfer at the wall 4, and the 
mass transfer at the wall ti, for a given value of 
the normal wall velocity II,,,. The static pressure 

pw and the concentration at the wall C, are not 

prescribed, but are given by the solution to the 
equations. The variation of the above quantities 

with respect to the surface mass transfer will be 
determined. 

2.2 Outer expansions 

We nondimensionalize the velocities u and t? 
with a characteristic velocity U, and velocity 

w with Wm. The coordinates are referred to R, 

the radius of curvature of the cylinder near the 
stagnation line. The Reynolds number is then 
given by U ,_R/v. The outer expansions of the 
solutions at high Reynolds number (after Van 
Dyke [2]) are: 

u 
-_ = 
vi,> U,(X, j) + & U2(X, j) + . . (7a) 

1’ 
- = I’,(:, 7) + p’- I’,(%, j) + . . 

ui, JRe 
(7b) 

W 
-_ = 

W, 

W,(X, 7) + A- W,(X, j) + . . . (7c) 
JRe 

P - PGC 
p:- 

= P,(X, j) + -Lyx, jq + 
JRe 

(8) 

T 
- = T,(X, jq + -Lm T2(X, j) + . . 
T, JRe 

(9) 

velocity u (x-component of momentum 
equation) : 

1 

+1+p 
-u,v, +--= 1 @2 o 

l+jf% 
(12b) 

velocity I: (y-component of momentum 

equation) : 

O(l) 

(134 

1 al/, 1 av, __. O(lIJRe) 1 + y U’>F + c&J’T; 

+ I+ + v,7’/, _ L&U, 
aj ay 1+y 

+ dP,_ = 0 
G 

(13b) 

velocity w (zcomponent of momentum 
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equation) : 

o(l) & Ulz- + V, $- = 0 (14a) 

O(II,&) & U, z + i:_ Uz s 

+~dWz+&z!!=O 
1 ay 2 aj (14’4 

energy equation : 

concentration equation : 

We can eliminate P, from equations (12a) and 
(13a) and show that the nondimensional vorticity 

i av, au, 
(q-- 

i+jax aj - &j U, (174 

is constant. Since the vorticity in the free stream 
is zero, we have 

01 = 0. (17b) 

The first-order outer expansion has zero vor- 
ticity, and hence is a potential flow. Equations 
(12a) and (13a), together with equation (17b) 
yield 

P, + k(U: + Vf) = constant = k (18) 

which is identical to Bernoulli’s equation. 

Equation (18) defines the pressure P, when U, 
and V, are known. In a similar manner it can be 
shown, using equations (llb), (12b) and (13b), 
that 

i av, au, i 
~2=_-~~-_-_----_U2=0 

i+yax aj 1+y 
(19) 

and an equation analogous to equation (18) can 
be derived : 

P2 + u,u, + v*v, = 0. (20) 

Imposition of the free-stream conditions on the 
remaining equations yields the following set of 
solutions for the components of the transverse 
velocity w, the temperature 7: and the con- 
centration C : 

WI = constant = 1 

W, = constant = 0 

T, = constant = 1 
> 

T2 = constant = 0 (21) 

C, = constant = 0 

C2 = constant = 0. 

The boundary conditions at the wall for the 
outer expansions are obtained through matching 
with the inner expansions. As we will show later 
[equations (57a) and (57b)], the expressions for 
V,(% 0) and V,(X, 0) are given by 

V*(X,O) = 0 (22a) 

V2K 0) = JUMP, PW 

where U, 1 and /J1 are constants defined in 
equations (24b) and (43a). Far from the surface 
of the cylinder, 

u: + v: = 0 (23a) 
u2 = 0, v, = 0 (23b) 

where U, and V, are the velocity components of 
the potential flow around the body for the case 
of the solid surface and U2 and V, are the 
components of the potential flow when V,(X, 0) 
+ 0. 

In dimensionless form, equation (7a) gives 
the solution for u near the wall as 
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4% 0) term, and the second is the dispIa~ement-effect _I_-. = 
U,, 

U,(%, 0) + jxe U,(X, 0) + . . . (24a) term. We write the inner expansions as follows : 

which we write as an expansion for small values 
ofx: 

UC% 0) X 1 
--= U,,-+--U21~+... (24b) 

U, R JRe 

X 
=u,,z 

u 1 
1+$&-;+... . 

I 
(24c) & = - ’ 

o? I + -!-__. 

Y!Y!$! l(y) 
[ 

The coeficient for the first-order velocity, U, 1, &J, ,Re) 

is a constant which depends only on the geo- 1 
+ ~-- 

UZI 1 
metry of the body. The following are values of 

JCU, ,Re) 
F,(n) + u,, 7% F&?) + . . 1 U, I for a series of simple shapes : d8) 

circular cylinder u,, = 2 (25a) 

ellipse U,,=l+a/b (25b) 

parabola u,, = 1 (25~) 
thin symmetric 

Joukowski airfoil u,, = 1 (25d) 

Rankine half body u,, = l-5 f25e) 

The coefficient for the second approximation, 
Uzl, is also a constant which depends only on 
the displacement speed, i.e. on the growth of the 
first-order inner solution. There are two values 
for U, I available in the literature. Van Dyke [7] 
calculated the value for a parabola to be U2 r = 
- 0.61. For the Rankine half body, Devan [X] 
obtained Uzl = - 062. Generally one can 
expect that Uzi will be negative. 

2.3 Inner ~~~~~sion~ 
The inner expansions are written in the inner 

variable 

(2% 

(31) 

(32) 

‘I = ; jC& ,W. W-9 These expressions can be substituted into the 
Navier-Stokes equations [equations (lH4)] 

The following expressions are so formulated that and terms of the same order again collected. In 
the continuity equation is automatically satis- each case, the first equation represents the Iirst 
fied. The first term in each case is the first approximation of unit order, the second is 
approximation and the last two terms represent composed of terms of order i/JRe proportional 
the second approximation. The first of these to Uir, and the third consists of terms of order 
latter two terms is the Iongitudinai curvature l/JRe proportiona to U2i. 
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The equations for u are 

f”’ +ff” + p - f'2 = 0 
FY' +fFr' - 2f’FA +f”F, 

(334 

= _Pc_$“‘_f”_ff’ (33b) 
F&” f f F&’ - 2f’F& + f”Fd = - Pd. (334 

The equations for w are 

h” + fh’ = 0 

H; + fH:. = (qf- 1 - F,)h’ 

H; + f Hd = - F,h’. 

The equations for p are 

p’ = 0 

pi = - 2f'2 

PA = 0. 

The equations for Tare 

;gff + fg' = 0 

(34a) 

(34b) 

(34c) 

(35a) 

Wb) 
(354 

(364 

kG;+fC:= (,+-Fc)gr (36b) 

;G; +fG&= -l$g’. 

The equations for C are 

(36~) 

&c’( +fc' = 0 (374 

Wb) 

kc; +fC; = -Fad. (37c) 

The boundary conditions for the foregoing 
equations are listed below. These values are 
obtained by direct matching, as shown in the 
next section, but are given here to complete the 
problem statement of the system of equations 
to be solved. 

ff=o ‘I’m 

f~fw+$!+ f=O f' = 1 
m 11 

F, = 0 F; = 0 F;= -1 (38) 

F, = 0 F; = 0 F& = 1 

h=O 

H, = 0 

H, = 0 

h=l 

H, = 0 

I 

(39) 

H, = 0 

p=l 

PC = -2q 

1 

(40) 

P, = 2 

g=o 

G, = 0 

G, = 0 

g=l 

G, = 0 

G, = 0 
I 

(41) 
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q=o 1]=C.C 

c=o c=l 

c, = 0 c, = 0 (42) 

c, = 0. c, = 0. 1 

We obtain the following analytical solutions Then 
of equation (35) by using the boundary con- 
ditions [equations (38) and (40)] and equation 

lim UI(X, J) = U,(X, 0) [l - Y] 
?+,, 

(334; 

p=l 

P, = - p, - ‘I -f” -ff’ (43) or, for small ?c 

P, = 2 

where 

- - 
hmU,(x,y) = U,, 
8-O 

; r1 - Yl 

(434 

+y y; 

0 

+ o(P), 

w 

(47) 

2.4 Asymptotic matching 
We adopt here the asymptotic matching 

Similarly, it can be shown that 

procedures outlined by Van Dyke [6], whereby 
the outer expansion in the limit as j + 0 is p_0 
matched to the inner expansion as r] -+ co. For 
the velocity component a, this procedure yields 

Then we may write equation (44) as : 

(48) 

(44) 

The outer flow can be expanded for small y in a 
Taylor’s series : 

lim U,(X,j) = U,(X,O) 
3’0 

_ au, 

+v,g, + 
( > 

Since OI = 0, we can write 
equation (17) 

o(Y2). (45) 

u 1 

+$ jRe 
--G(r) . 11 (49) 

Noting that Y = q/J(U 1 ,Re), we obtain from 
according to the matching 

lim f’(q) = 1 (sOa) 

(46) 

(5Ob) 

lim Fi (q) = 1. (5Oc) 
v-m 
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The normal velocity u may be written In a similar manner, the inner and outer expan- 
sions for the pressure are set equal : 

P - Pm 1 
2 = lim 

PUCC [ 
P1(X, j) + ~ P&c j) 

y-0 JRe 1 

Both I’, and I’, are expanded for small J 

lim V,(X, j) = V,(X, 0) -k j z t 0(y2) (52) 
y-0 ( ) w 

lim V,(X, 7) = V,(X,O) + j s + 0(J2). (53) 
,:“O ( ) w 

The continuity equation yields the following 
expressions for the derivatives of V, and I’, at 
j + 0 and small values of X : 

avl 0 - = 
a,? w 

- V,(X, 0) - ( > f&l 
= -V&) - u11 

av1 _ 0 aj w 

- - V,(X,O) - F c ) x w 

= - V,(X, 0) - u21. 

Equating the expressions for u gives : 

VIE 0) - j; VI/,(% 0) - j u 11 

+ & b;(X 0) - & V,G, 0) 

-Luzl +qj2) 
JRe 

ap1 C-1 aj w 

= Uf(X,O). 

Using equations (18) and (20), we obtain P, and 
P, for small values of x : 

P,(X, j) = f - 3 u:, 

= ,‘ri - J(;;;Re) f(v) + 0 . (56) 

+u:, g 
0 

2 

,/U-J&9 P,(q) + u,, 1P (rl) 
Ull JRe I> (58) 

The outerexpansion pressure components P, 
and P, are expanded in Taylor’s series to give 

+ O(j2). (60) 

From equation (18), we obtain : 

(54) s 
( > 

= -U,(X,O) av, 
W ( 1 ag W 

(61) 
w 

or, by using equation (46) 

(62) 

Y + W2) (63) 
\ I 

The matching procedure for 11 yields : 

V,(X, 0) = 0 (574 
P,kj) = -u,,u2, ; 

0 

2 

+ O(Y). (64) 

The matching procedure then yields : 

= J&L)&. (57b) limp = 1 
Il-00 

(65a) 
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lim P, = -243 
v-f= 

lim Pd = 2. 
rl-+a 

(65b) 

(654 

czc= -.A.+ 
n’ 

c,,. = - P,, = p1 +f;' c,, = P& = 2 

2.5 Boundary-layer characteristics 
The shear stress at the wall in the x-direction 

can be written 

(66) 

where the indices w refer to the values of the 
functions at the wail v = 0. When t, is norma- 
lized by the value that obtains in the absence of 
second-order effects, rXO, we get 

7, 1 1 _ 

The remaining boundary-layer characteristics 
may be written in a similar manner : 

where pt = p,, -I- (p/2)U2, is the total head. 
The values of the second approximation co- 

effrcients Ci, to Ccc, cr, to CGd are positive, 
and are given by 

ctez _%!r 
f:: 

CSd = F& 
fl: 

(73) 

~- &d = - ;;;c_cw. t7@ 

The heat transfer, 4, and the mass transfer, vit, 
are defined in the usuai way by the gradients of 
temperature and concentration at the wall : 

/2v\ 
(7% 

= (1 - Cw)zl,. (79b) 

The concentration at the wall is determined by 
the Eckert-Schneider condition, equation (6a). 
For the case without second-order effects, we 

get 

From equations (79) and (80), it can be seen that 
ti and CwO are equal to zero for 11, = 0 (1, = 0). 
This is the case for no mass transfer; the ratios 
riz/&, and C,,JC,~, however, have finite values. 

3. RESULTS AND DISCUSSION 

We have determined the second approxima- 
tion to the solution of the Navier-Stokes equa- 
tions for incompressible, three-dimensional flow 
in the neighborhood of a stagnation line on a 
swept cylinder. 

We used the methods of matched asymptotic 
expansions to determine the coefficients in 
expansions for the flow velocity components, 
pressure, temperature, cross flow at the wall, 
and wall concentration. In this way, we studied 
the effect of wall mass transfer on the second 
approximation coefficients for IongitudinaI 



76 K. GERSTEN and J. F. GROSS 

curvature and displa~ment. In addition, we 
obtained a first approximation to the three- 
dimensional flow by introducing a sweep angle 
in the flow which brings in the transverse 
velocity, tti It should be,noted that this velocity, 
as well as all the other boundary-layer charac- 
teristics, are independent of z. 

The results of the matching procedure and the 
numerical calculations are given in equations 
(67)-(SO), which present the numerical coeflici- 
ents for the second approximation in longitudinal 
curvature and displacement. The numerical 
values of all functions at the wall are listed in 
Table 1. Since the Reynolds number contains 
U, = V cos &, the effect of the sweep angle can 
be obtained directly. Since all coefficients in 
equations (67)(72) are positive, the direction of 
the second-order effects on the boundary-layer 
characteristics can be seen from the signs 
preceeding the coefficients. If we assume that 
U,, is negative, as indicated above, then all of 
the second-order effects are negative, i.e. lead to 
decreasing values of the characteristics. The 
sole exception is the lon~tudinal curvature 
effect on the wall concentration. This reduction 
reflects the increase in thickness of the boundary 
layer due to centrifugal forces resulting from the 
convex wall curvature. The reduction of pt - p,,, 
means an increase in the value of the wall 
pressure pw with respect to the inviscid value 
pwo. The explanation is as follows. In the 
inviscid solution, the pressure gradient per- 
pendicular to the wall is present because of the 
convex curvature of the wall. This pressure 
gradient at the wall is positive because of the 
streamline curvature near the wall. When 
viscous forces are taken into account, the 
centrifugal forces near the wall are reduced, and 
hence also is the pressure gradient. Since the 
matching condition with the outer flow remains 
the same, the pressure at the wall must increase. 

All the coefficients in equations (67)-(72), 
with the exception of C,,, are dependent on the 
mass-transfer parameter 

Figures 2-4 show the variation of the second 
approximation coefficients with wall mass trans- 
fer, C,, for suction and injection. Figure 2 shows 

2.5- 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

Injection Gil S”0i0” 

FIG. 2. Effect of mass transfer on the second appro~mation 
coeffkients for longitudinal curvature and displacement 

[see equations (67) and (69)l. 

the variation of longitudinal shear stress and 
wall pressure. Transverse wall shear stress, heat 
transfer (Pr = 07), and mass transfer (SC = 0.7) 
at the wall are plotted in Fig. 3. Finally, Fig. 4 
shows the coefficients for the concentration at 
the wall. The absolute values of the coefficients 
given in Fig. 2 are about an order of magnitude 
greater than those in Fig. 3, but their range of 
relative variation with respect to mass transfer 
is much less. The values shown in Fig. 4 have 
the same order of magnitude as in Fig. 3, but 
exhibit much less relative variation with mass 
transfer. 

Inspection of Figs. 2 and 3 show that in- 
creasing mass transfer increases all second- 
approximation coefficients: This results from the 
increase in boundary-layer thickness due to 
injection. Since the second-order curvature 
effects are proportional to 6/R, it is clear that 
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FIG. 3. Effect of mass transfer on the second approximation 
coefficients for curvature and displacement [see equations 

(68) (70) and (71)]. 
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FIG. 4. Effect of mass transfer on the second approximation 
coefficients for curvature and displacement jsee equation 

(72)1. 

they will increase with injection. Second-order 
effects due to displacement obviously will show 
the same dependence on mass injection as does 
surface curvature. Increasing the boundary- 
layer thickness will result in greater displace- 
ment effects. 

Figure 4 shows that coefficients for the wall 
concentration exhibit the opposite tendency ; 
i.e. they decrease slightly with increasing wall 
mass injection. The concentration is obtained 
from the Eckert-Schneider condition, and the 
tendency for the coeIIicients to decrease in- 
dicates that the increase due to the first-order 
wall concentration is greater than that contri- 
buted by the additional terms due to second- 
order effects. The coefficients for C, = 0 in this 
report are identical with those found by Van 
Dyke [3]. 

It must be reemphasized here that the cal- 
culation of the coefficient UZl, which determines 
the magnitude of the displacement effect at the 
stagnation point, involves the global solution 
to the potential flow over the effective body, 
which consists of a boundary layer and an air- 
foil. This calculation has been performed by Van 
Dyke for a semi-finite body (parabola), and by 
Devan for the Rankine body. For the case of a 
closed body, however, it is not at all clear just 
how the coefficient can be determined, since the 
wake and the separation region can have a 
considerable effect on the effective body shape 
because of body and viscous layers. 
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EFFETS DU TRANSFERT MASSIQUE SUR LES SOLUTIONS D’ORDRE ELEVE DE 
LA COUCHE LIMITE: BORD D’ATTAQUE DUN CYLINDRE 

Rhmb On etudie I'koulement incompressible tridimensionnel p&s de la ligne d'arret d’une surface 
cylindrique. La mithode du developpement asymptotique est utilisee pour obtenir une extension des 
solutions des equations de la couche limite de Prandtl. par exemple la seconde approximation des 
equations completes de Navier-Stokes. On determine les effets de second ordre dus a la courbure de la 
surface et au d&placement sur les composantes de la vitesse. sur la pression. la tension tangentielle. le 
transfert thermique et massique. 

On montre que les effets de la courbure longitudinale et du d&placement sont ndgatifs en entrainant 
des valeurs decroissantes dcs caracteristiques de la couche limite: tension tangentielle. transfert thermique 
et massique. Ce comportement resulte de I’action des forces centrifuges dues a la convexite de la surface. 
Une injection massique a la paroi augmente tous les effets du second ordre. Ceci r&the de I’tpaississement 
de la couche hmite par I’injection. L’effet de courbure r&tie uniquement une influence opposee sur la 

concentration par&ale. 11 augmente la concentration a la paroi et cet accroissement est reduit par 

I'injection. 

MASSENTRANSPORT-EFFEKTE AUF GRENZS(‘HlfCHTL6SUNGEN HijHERER 
ORDNUNG 

DIE ANSTRtiMKANTE DES UMSTKGMTEN ZYLINDERS. 

Zusnmmenfassmg-Es wurde die dreidimensionale inkompressible StrSmung an der Staulinie einer 
umstriimten zylindrischen Flache untersucht. Es wurde die Methode der schrittweise asymptotischen 
Expansion genutzt, urn eine Erweiterung der Losung der Prandtl-schen Grenzschichtgleichungen zu 
erhalten, d.h. eine zweite Naherung der vollen Navier-Stokes’schen Gleichungen. Es wurden die durch 
die Oberflachenkontur bedingten Auswirkungen zweiter Ordnung auf die Geschwindigkeitskomponenten, 
den Druck, die Schubspannung, den W&me- und den Stoffiibergang bestimmt. 

Es wurde gezeigt, dass die Kriimmung der Oberflachenkontur in Langsrichtung sich vermindernd 
auswirkt, d.h. die Werte char~teristischer Grossen in der Grenzschicht nehmen ab: die Wandschubspann- 
ung, der Warms und der Stoff~bergang. Dieses Verhalten ergibt sich durch die Ausbreitung der Grenz- 
schicht normal zur Wand durch Zentrifugalkr~fte aufgrund der konvexen Oberfl~chenkr~mmung. 
Gesteigerte Massenzufuhr an der Wand erhiiht alle Effekte zweiter Ordnung. Dies ergibt sich durch die 
Verdickung der Grenzschicht durch die Massenzufuhr. Nur die Auswirkung der Kriimmung auf die 
Wandkonzentration zeigt ein anderes Verhalten. Sie fiihrt zu einer Erhohung der Wandkonzentration und 
diese Erhohung lasst sich durch Massenzufuhr verringern. 

RJIMHHHE SiqI3T.A HEPEHOCA MACCbI HA PE3YJIhTA’I’LI PEIIIEHMR 
YPARHEHBH HOI’PAHHHHOI’O CJIOH IlbICOHMX HOPfIfiHOt3 

OEJIACTb HEPEAHEn KPMTMYECHOH TO9KM IIOHF:FE:~IHOOIITE~.~~MOI‘O 
IIMJIIMHfiPA 

IfOKa:IaHO, YTO B.III'IAHKe IInOAOJIbHO& KnI'IBI'I3HbI 51 ItbITWHeHHR OTpRI@TWIbHO, T.K. OHO 

IlpIlBOfiIIT KyMeHbIIIeHMKI XapaKTepMCTnK nO~~a~I~YHO~~~C~IOR(Ha~~R)fl~HNFI,K03~~I1~ll~HTOlI 

Tp‘?HIIR). ST0 IIpOMCXOAHT R p""y"bTaTe ~TOnmeHMK Ilol~paHIlYHOIo WIOH 1IO;I nO:~#?ilCrBII?!l 

neHTpO&KHbIX CEI,?, BO3HIIKaIOtI.IIIX 113-3a TOrO, YTO IlOne['xHOCTb IIlllf!eT IILIIlyK.Y~Io KOH- 

@,rJJpa~bllO. ~B6.?;lKYeHHe BAyna Ha CTeHKe BeA.eT K POCTY RCeX 3@@WTOu nTO})OIW IlO~'RRKa, 

T.K. Bx,SB IIpClBOfiRT K ~3~~JIIlYeIU'IIO TOJlII~llHbI IIOrpaHIIYHOI'O CSIOII. f<~WRHM~l K~IIBIl:HIbI Ha 

KOHIIeHTpankIIo Ha CTeHKF II~)OTkIlIOIIOJIO~HO no cnoeMp aI,~rr~(~on~Ica~~o~~ xapaIiTepy : 
ova ynenuYnBaeT KoaqeHTpaykIII, H TO BpeMR KaK R;lyB T~~Mo:KIT 3TO ynenHYesIIe. 


