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Abstract-- The three-dimensional incompressible flow near the stagnation line of a swept cylindrical
surface is studied. The method of matched asymptotic expansions is used to obtain an extension of the
solutions of the Prandtl boundary-layer equations. i.e. a second approximation to the full Navier-Stokes
equations. The second-order effects due to surface curvature and displacement on the velocity com-
ponents, pressure. shear stress. heat transfer. and mass transfer are determined.

It is shown that the effects of longitudinal curvature and displacement are negative: i.e. they lead to
decreasing values of the boundary-layer characteristics: wall shear, heat transfer, and mass transfer. This
behavior results from the stretching of the boundary layer normal to the wall by centrifugal forces due to
the convex surface curvature. Increasing mass injection at the wall increases all second-order effects. This
results from the thickening in the boundary layer produced by injection. Only the curvature effect on wall
concentration exhibits the opposite behavior. It increases the wall concentration and this increase is

diminished by injection.

NOMENCLATURE o)

a/b, thickness ratio of ellipse [see GAn) functions defined in equation (31);
equation (25b)}; Gyn)

C, species concentration; h(n)

C,.C,.  dimensionless concentration func- H.(n) functions defined in equation (29);
tions, defined in equation {10); H,n)

c(n) k, thermal conductivity ;

CAm functions defined in equation (32); Le, Lewis number = S¢/Pr:

Cidm i, mass transfer by diffusion [see

Ci Cigy  coefficients defined in equations equation (79b)];
(6772),i=1,2,...,6; p(n)

C,. mass-transfer parameter defined Pin functions defined in equation (30);
in equation (38); PAm

fim P,. P, dimensionless pressure functions

Fin functions defined in equation (28); defined in equation (8);

Fydn) Pr, Prandtl number;
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P, total head = p,, + (p/2)UZ;
g, heat transfer [see equation (79a)];
R, radius of curvature at the stagna-

tion line (see Fig. 1);

Re, Reynolds number = U R/v;

Sc, Schmidt number ;

T, temperature ;

T, T, dimensionless temperature func-
tions defined in equation (9);

U, free-stream velocity component
perpendicular to the cylinder
generators (see Fig. 1);

U,, U,  dimensionless velocity functions
defined in equation (7a);

u, velocity component in x-direction ;

U, Uy, constants, defined by equation
(24b);

v, free-stream velocity ;

Vi, Vs, dimensionless velocity functions
defined in equation (7b);

v, velocity component in y-direction ;

W, freestream velocity component
parallel to the cylinder generators
(see Fig. 1);

W, W,, dimensionless velocity functions
defined in equation (7¢);

X, longitudinal coordinate (see Fig.
1);

X, dimensionless coordinate = x/R;

A coordinate perpendicular to the
wall (see Fig. 1);

¥, dimensionless coordinate = y/R;

z, coordinate parallel to the cylinder
generators.

Greek symbols

B constant defined in equation (43a);

n, dimensionless variable of the inner
expansion, defined in equation
(26);

K, curvature at the stagnation line
=1/R;

v, kinematic viscosity ;

P, sweep angle ;

0, density;

T, shear stress at the wall ;

@y, 05, dimensionless vorticity functions,
defined in equations (17) and (19).

Subscripts

1, first-order outer expansion ;

2, second-order outer expansion;

c, surface-curvature effect ;

d, displacement effect ;

00, free-stream condition ;

0, values without second-order
effects;

w, wall values;

X, longitudinal direction x;

z, transverse direction z.

1. INTRODUCTION

PRANDTL’S boundary-layer theory provides a
relatively accurate description of a remarkable
number of simple flow situations. However,
many flows that occur in modern technology
possess characteristics that cannot be treated
within the simple framework of the Prandtl
approximation. It is necessary, for these more
complicated flows, to seek approximate solu-
tions to the Navier—Stokes equations that are
of higher accuracy than the classical or Prandtl
approximation. This extension of classical
boundary-ayer theory is called higher-order
boundary-layer theory, an excellent critical
review of which was recently given by Van
Dyke [1].

If Prandtl’s theory is regarded as the first
approximation to the solution of the Navier-
Stokes equations, then the retention of terms
involving surface curvature and the considera-
tion of the interaction of the boundary layer
with special features of the external flow, such
as displacement and vorticity, represent the
structure upon which the second-order cor-
rections to the Prandtl approximation can be
formulated. The method of matched asymptotic
expansions is particularly useful in developing
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higher approximations to the boundary layer,
and Van Dyke has worked out the second-order
solutions for incompressible [2,3] and com-
pressible [4] flows. In fact, higher-order boun-
dary-layer theory has received great attention
from many authors, and a comprehensive biblio-
graphy may be found in Van Dyke’s review.
According to singular perturbation theory,
the classical or Prandtl boundary-layer equa-
tions are nonlinear, but all the higher-order
approximations are linear. Rott and Lenard [5]
showed that the second-order correction can be
separated into several effects, each associated
with a particular physical interpretation. These
have been divided into terms representing longi-
tudinal and transverse curvature (terms re-
tained within this order of approximation to the
Navier—Stokes equations) and terms associated
with the boundary condition at the outer edge of
the boundary layer and at the outer flow. These
latter effects are due to the displacement of the
outer flow by the boundary layer and the varia-

tion of vorticity and stagnation temperature in
the outer flow. Other effects, such as the imposi-
tion of mass transfer at the surface, three-dimen-
sionality, and the inclusion of a binary gas have
not been treated heretofore. We intend to discuss
these additional effects for the case of a stagna-
tion line on a swept cylinder. In this study, we
restrict ourselves to incompressible flow.

In certain cases of practical interest, the
boundary layer may be thickened by viscous
heating, transpiration cooling, or ablation. In
the case of a body with surface curvature, such
as a cylinder, we must include appropriate terms
in the solution. In addition to this, even in the
absence of vorticity and of variation of stagna-
tion temperature in the outer flow, we must
consider the displacement of the outer flow by
the boundary layer.

We treat the flow of a binary gas near the
stagnation line of a swept cylinder. The free
stream is uniconstitutive, with constant velocity
V having components U, = V cos ¢ (see Fig.

F1G. 1. Coordinate system for the swept cylinder
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1)and W, = V sin ¢ {parallel to the generators
of the cylinder). A gas is injected at the surface
of the cylinder and diffuses through the boundary
layer. The method of matched asymptotic
expansions is employed to obtain second-order
solutions that include the effects of longitudinal
curvature and displacement. By “‘longitudinal
curvature” we mean the surface curvature with
respect to the flow in the x-y plane. Our solu-
tions will show, to the second order, the effect
of mass transfer on wall shear and heat transfer
in the three-dimensional boundary layer near
the stagnation line of a swept cylinder.

2. GENERAL THEORY

2.1 Basic equations

We begin with the Navier-Stokes equations
for an incompressible binary fluid with constant
properties. Figure 1 shows the coordinate
system for the flow considered here; ie. the
stagnation-line region on a swept cylinder. The
velocity components in the x, y and z directions
are u, v and w, respectively. The static pressure
is p, the temperature is T, and the concentration
is given by C. When the free-stream velocity is
low and the sweep angle is small, the viscous
heating in the energy equation due to the w
velocity component may be neglected. In addi-
tion, the Schmidt number Sc is taken equal to
the Prandtl number, Pr; ie. the Lewis number
is equal to unity. The equations for steady flow
may then be written

ou 0
— —_— 1 < =
5x T gy [ RN]=0 (1)
———1-~ u@E + v‘zti + < uv ! L @
I+xky 0x 8y 1+xy 1+ kypdx
(1 +xy)?ox? oy 1+ kydy
K2 2k Qv
_ 1 v ov ko 10p
(I1+xy) ox 0y 1+xy pay

3 1 &% . o%v LK v
T e T a2 1+ kydy
K? 2x  du
— — 5 2b
T+ 1+ m) ax] (20)
1 aw aw

. 1 02w+62w+ K ow (20)
=Y+ Ky éx* 0yt 1+ kydy
1 oT aoT

TS wr e ua + 135;
_))A v_l___éi’l:_*.azz_},__}_c,_a’r (3)
CPr{(1 4+ ky)Pox? T 0y 14Ky dy

L oe
dy?

Kk 0C
- — . 4
1+xy6y] @

Although the flow is independent of z, it is three-
dimensional in the sense that it includes the
three velocity components. The unknowns in
this system of equations are u, v, w, p, Tand C.
These six equations, together with the appro-
priate boundary conditions, will be sufficient
to obtain a solution.

The boundary conditions for equations (1)}-(4)
are at the wall (y = 0}:

u=14_
U=,
w0 (5)
T=T,
far from the body (y — w0):
JW + o) =U,
we= W,
P=Po (6)
T=T,

C=0
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The mass transfer at the wall is given by the
boundary conditions for v = v,,. It should be
noted that, for a binary gas, the Eckert—
Schneider condition, which equates the con-
vective flow of a component toward the wall
with the diffusive flow away from the wall, links
the concentration, the concentration gradient,
and the normal velocity at the wall :

o = \ 1 oC
T T Se(l — e y\ay ).,

We prescribe the free-stream velocity V, the
radius of curvature R, and the sweep angle ¢,
and seek the two components of the wall shear
7, and 7., the heat transfer at the wall ¢, and the
mass transfer at the wall m, for a given value of
the normal wall velocity v,,. The static pressure
p,, and the concentration at the wall C,, are not
prescribed, but are given by the solution to the
equations. The variation of the above quantities
with respect to the surface mass transfer will be
determined.

(6a)

2.2 OQuter expansions

We nondimensionalize the velocities u and v
with a characteristic velocity U, and velocity
w with W_. The coordinates are referred to R,
the radius of curvature of the cylinder near the
stagnation line. The Reynolds number is then
given by U _R/v. The outer expansions of the
solutions at high Reynolds number (after Van
Dyke [2]) are:

1
a”_ = UE D+ G U5+ .. ()
) 1
z?lf = V(%) + ﬁ; VaX, 5) + ... (7b)
VIV/V—_W(xy \/R W%, 5) + ... (T0)
P PRI + - Py ) ®)
"pTJ?, = Py(%.7) + ﬁé AR+
T
= T(X, ¥) + \/R -LEH+... )

- - 1 - -
C=C/(xy)+ —:/EeCz(x,y) + ... (10)
Substituting these expressions into equations
(1)(4) and collecting terms of the same order, we
obtain for:

the continuity equation:

oUu, 0 _
0(1 — + —[ V]1=0 11
() &t (11a)
, oU
0(1/JRe) = +HV]=0  (l1b)
velocity u (x-component of momentum
equation):
1 ouU au
(10 ) T — U L+ =
() 1 Lok Loy
1 1 oP
+—UV+—et=0 12
T+ " T H ok (122)
1 ou | oU
01/ /Re) ——U,——+— U, —>
(VR 5V vy 5V s
ouU, ou, 1
Vi—+V,—+ —— U,V
T Ty Tt
1 1 &P
U,V + ——=2=0 12b
L+5 2" 147 0x (12b)
velocity v (y-<component of momentum
equation):
1 oV 1%
01 U, 24V,
) 1+y 'ox oy
| apP,
— Ui +-—=0 13
1+3 y oy (13a)
v, 1 oV,
0(1/\/R€) 1 Uz ax “‘3—; 15}?
6V2 v, 2
== - ——U,U
Vgt s
oP
+-2=0 (13b)
ay
velocity w (z<component of momentum
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equation):
1 oW, ow,
— p 4y 2L
0(1) 1+j»U‘ 7 'G5 0 (14a)
1 oW, 1 ow,
0(1/./Re) -
(1/y/Re) U’ax 1+yU26x
w, oW,
+V1‘3_+V2 —1=0  (14b)
oy oy
energy equation:
1 T oT,
1 =
o(1) T U1 7% + V= & 0 (15a)
1 0T, 1 oT,
01/ /Re) ——U,——=
(/\/ ) 1 ox 1+yU26x
T, oT,
ht'3 il 1
+V‘6)7+V26)7 0 (15b)
concentration equation :
1 oC ac
0 - U, = ——t=0 (1
(1) 1+ -U, % + ¥ 3 (16a)
oC, 1 oC,
1 -y, 2z2 _ y,rt
01//Re) 1+yU1 0x 1+yU2 ox
oC, oCc,
+ Vi —+V,—=0. (16b)
oy ay

We can eliminate P, from equations (12a) and
(13a)and show that the nondimensional vorticity
1 av, aU, 1

B ==t - ==V,

1
vy & 1150 1

is constant. Since the vorticity in the free stream
is zero, we have

@, = 0. (17b)

The first-order outer expansion has zero vor-
ticity, and hence is a potential flow. Equations
(12a) and (13a), together with equation (17b)
yield

1
P, + E(Uf + 12) = constant = = (18)

which is identical to Bernoulli’s equation.

Equation (18) defines the pressure P, when U,
and V| are known. In a similar manner it can be
shown, using equations (11b), (12b) and (13b),
that

~_U,=0 (19)
y

T1+jyox 8y
and an equation analogous to equation (18) can
be derived:

P2+U1U2+V1V2=0. (20)

Imposition of the free-stream conditions on the
remaining equations yields the following set of
solutions for the components of the transverse
velocity w, the temperature 7, and the con-
centration C:

W, = constant = 1 |

W, = constant = 0
T, = constant = 1
T, = constant = 0 (21)

C, = constant = 0

C, = constant = 0. |

The boundary conditions at the wall for the
outer expansions are obtained through matching
with the inner expansions. As we will show later
[equations (57a) and (57b)], the expressions for
Vi(x,0) and V,(x, 0) are given by

V(%,0)=0

Vy(%,0) = \/(Ull)ﬁl
where U,, and f§, are constants defined in

equations (24b) and (43a). Far from the surface
of the cylinder,

Ui+ W =0
U2=0, V2=

(22a)
(22b)

(23a)
(23b)

where U, and ¥, are the velocity components of
the potential flow around the body for the case
of the solid surface and U, and V, are the
components of the potential flow when V,(x, 0)
#+ 0.

In dimensionless form, equation (7a) gives
the solution for u near the wall as
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ux 0 _ U,(%,0) + b U,(%,0) + ...

U, n JRe

which we write as an expansion for small values
of x:

(24a)

1
ﬁ.ﬂt}:{.:-‘ UIIE-*— :/"'R'e UZIE'l“ - (24b)
X U21 1
=U T4 22 ) (4
11 [+U11\/Re+ ] (24c¢)

The coefficient for the first-order velocity, U,
is a constant which depends only on the geo-
metry of the body. The following are values of
U, for a series of simple shapes:

circular cylinder Uy =2 (25a)
ellipse e; U,y =1+ a/b (25b)
parabola U,, =1 {25¢)
thin symmetric

Joukowski airfoil  U,, =1 {25d)
Rankine half body U,,=15 (25¢)

The coefficient for the second approximation,
U,,, is also a constant which depends only on
the displacement speed, i.e. on the growth of the
first-order inner solution. There are two values
for U,, available in the literature. Van Dyke [ 7]
calculated the value for a parabolato be U, =
— 0-61. For the Rankine half body, Devan [8]
obtained U,, = — 0-62. Generally one can
expect that U,, will be negative.

2.3 Inner expansions
The inner expansions are written in the inner
variable
y
= «\/(U“Re). (26)
R
The following expressions are so formulated that
the continuity equation is automatically satis-
fied. The first term in each case is the first
approximation and the last two terms represent

the second approximation. The first of these
latter two terms is the longitudinal curvature

term, and the second is the displacement-effect
term. We write the inner expansions as follows:

u x|, 1 ,
U; = Uy, R [f (n) + ;/_(_(-J_:f) Fin)
U 1
o T P + ] @)
11
v -1 JWi)
Uoo B 1 + J _— \a/Re {:j( )
JWU{{Re)
+ AU, Re) Am + U, \/ReF‘M) +
(28)
w 1
W; = h(n) + \/(U“Re) An)
U 1
Uﬂ' \‘/"R“é Hy(n) + (29)
11
— 9 2
pprco =3-13 Ui, (%) [p{’?)
1 U,
+ W:R—Q)PC(’?) + U“ JR Pa(’?) +.
{30)
T— T, 1
T, — Tw gin) + —\7611R ) Gl
U 1
+ E-'z"l“\/‘“'lg{é G4 (31)
11
C. — 1
o + |
C, ) \/(UHR ) )
i
N %75- Cm+... (2
N

These expressions can be substituted into the
Navier-Stokes equations [equations (1}-4)]
and terms of the same order again collected. In
each case, the first equation represents the first
approximation of unit order, the second is
composed of terms of order 1/,/Re proportional
to U,,, and the third consists of terms of order
1/./Re proportional to U,;.
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: 1
The equations for u are Pl_ G/ +fG. = <11f_ B Fc> g (36b)
U A ~f7=0 (33a) 17 ’
F/' +fF = 2f'F, +f'F, LG, +fGy= — kg
= —P.—nf" —f"—ff" (@3b) P04 T/C= kg (36¢)
Fi'+fF] =2fFy+f'F;= =P, (330

The equations for w are

The equations for C are

1

_ s ' — 0
W+ fh =0 (34a) Sc ¢ +fc (37a)
H) +fH.=(f -1 = F)K B4y LY.
Hy +fHy= — F. (34c) 5. & HfC= ( =g F ) ¢ (37b)
The equations for p are 1 ,

—Ci+fCi= —Fy'. (37¢)
p =0 (35a) Sc
P.= - 2" (35b) The boundary conditions for the foregoing
P, =0. (35c) equations are listed below. These values are

obtained by direct matching, as shown in the

The equations for Tare next section, but are given here to complete the

1 problem statement of the system of equations
Eg” +fg=0 (36a) {0 be solved.
n=20 N>
V.. \/Re , N
~ f = =, f =0 f=1
U AN (T
F. =0 F. =0 F!l=~1 (38)
F,=0 F; = Fy=1 ]
h=0 h=1
H =0 H =0 (39)
H;=0 H,=0
p=1 l
P.=—2n (40)
g = g=1 ]
G. =0 G. =0 41)
Gd == Gd = 0




MASS-TRANSFER EFFECTS 73

n=20
c=0
C.=0
C,=0

We obtain the following analytical solutions
of equation (35) by using the boundary con-
ditions [equations (38) and (40)] and equation
(33a);

p=1
Pi=—B—n—f"-f (43)
P,=2
where
f1=lim(n —f). (43a)
n— oo

2.4 Asymptotic matching

We adopt here the asymptotic matching
procedures outlined by Van Dyke [6], whereby
the outer expansion in the limit as j — 0 is
matched to the inner expansion as y — . For
the velocity component u, this procedure yields

u . - - 1 _—
f]:z 11_{1;1) Ul(x,y)-i-mUz(an)

1 1
[f )+ ey

U L g } (44)

i U
im “R

=y

1
.+_d__
Ui Re

The outer flow can be expanded for small j in a
Taylor’s series :

lim U,(%, y) =

50

Ux,0)

U, _
+ i(%)w + 0(7%). 45

Since @; =0, we can write according to

equation (17)
1 1 ov,
_—U —
(1+ > +<1+yax>w

(%)
/).
_ av,
= —U,(%0) + ( 6x)“,' (46)

= w
c=1
C.=0 (42)
C; =
Then
llf(l) Uyx,y) = Uy(X, 0 [1 — 7]

- aLf) S
+ y(—(ﬁ ) + 0(3%)
or, for small X

lim U (X, §) =

y=0

X
ol Iy
U“R[ 71

N y(%‘;) + 0.

Similarly, it can be shown that

[l—y]

+ i(%)w +0(7).  (48)
Then we may write equation (44) as:
cxl-71+5() + et
=7+ g (‘W2> + 0
=imlvi g o+ g P

U, 1

+ U11\/R Fin )]} 49)

Noting that y = n//(U,,Re), we obtain from
the matching

(47)

lim U4(X, y) =

y—~0

Uai g

lim f'(n) =1 (50a)
n—
lim F (n) = — (50b)
=
lim Fj; () = L (50c)
n— o
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The normal velocity v may be written

[Vl(x )+ g Vel y)]

. Uiy
=lm<{— —————
n—*oo{ \/(UllRe)

1
o ofGo))p

Both V, and V, are expanded for small j:

v .
— = lim
o y—=0

lim Vy(%, y) = V1(%,0) + f(%) + 077 (52)

y=0

lim Vy(X, 7) = Va(%,0) + ?@—?) +0(%). (53)

50

The continuity equation yields the following
expressions for the derivatives of V, and V, at
¥ — 0 and small values of X:

AN U,
(@)= 0 (&),

= -Vx0-U,; (54
AN ou,
(55). - 10 (&),

= W% 0) = U,;. (55

Equating the expressions for v gives:

Vi(%,0) — y Vi(%,0) — P Ui

\/R Vy(%,0)

Uz + 0G7)

+ Va(%,0) —

1
m
\/R
o tim ) U RN
-:Ln:o{ \/(U“Re) f(n)+0<UuRe>} (56)

The matching procedure for v yields:

Vi(x,0) =0 (57a)
5(%, 0) = \/(Uu)[hm n— 1]
= J(U.1) B, (57b)

In a similar manner, the inner and outer expan-
sions for the pressure are set equal :

[rie+ o)

X 2
= lim {% -3 Uf1<§) X [p(n) +
1 U, 1
T T+ G e (n)]} (58)

The outer-expansion pressure components P,
and P, are expanded in Taylor’s series to give

P — Py
pU%

= lim
70

. oP
lim P(X,y) = Py(x,0) + i(—f) + 0(7%) (59)
§-0 0V Jw

“ - _ - 6P2 -2

lim Py(X,§) = Py(%,0) + ¥{—==) + 0(F?). (60)
50 0y J

From equation (18), we obtain :

6P1> (6U )
= -U (x 0
( 6_}7 w ! ) y w
ov
—Vi(x,0) (—_‘) (61)
v/ w
or, by using equation (46)

PN
(a—y\)w = Ul(x, 0)

Using equations (18) and (20), we obtain P, and
P, for small values of x:

2
X
P(%y=4%-3U}, (E)

2
+ UL (%) O (6

(62)

2
X =
Pyx,j) = —U;,Us, (§> +0(y). (64
The matching procedure then yields:

limp = 1 (65a)

7=
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lim P, = —2n (65b)
L/ Amdiet]
lim P, = 2. (65¢)
oo

2.5 Boundary-layer characteristics
The shear stress at the wall in the x-direction
can be written

Ju
szp"(é“};) *P" U L“\/(U“Re)
1 U 1
v Fly, + == F 66
(f JU,.Re) ) (66)

where the indices w refer to the values of the
functions at the wall # = 0. When 1, is norma-
lized by the value that obtains in the absence of
second-order effects, 7., we get

mcld. (67)
11

The remaining boundary-layer characteristics
may be written in a similar manner:

Te 1 U21 .
A C.
Tro J(U, Re) 2+ U, JRe Cyy  (68)
P Pw
pl - pr
1 U
-1 - 21 C
\/(UllRe)C Uy JRe > (69)

q i Uzt
I R
do JW i Re) Cact Uj/Re Caa (0
i 1 U,,
R C C
o JU,Re) > T gre 3¢ D
c, 1 U,,
el A R
Coo 't T, R Co T T R S D)

where p, = p_ + (p/2)U? is the total head.
The values of the second approximation co-
efficients C;, to Cq,, Cyy to Cgy are positive,
and are given by
Fo

= 73)
7. g (

Clc:—

’ 7
ch Hdw

Cy=— W Cy= s (74)
30= = P =i +1) Cay=Py=2 (75)
G: G,
Cpm — e Cog= 22 76
4¢ g;, 44 (]M ( )
Ci‘w C w
Cs»: =7 Csd = "‘“d" (n
Cw (W
C o
o - (7
Coc= f.Sc—c, Cos f.Sc—c, (78)

The heat transfer, ¢, and the mass transfer, m,
are defined in the usual way by the gradients of
temperature and concentration at the wall:

) T
a= -k (‘5;)

. v {oC
= - (a)“ = {1l - C,lv,. (79b)

The concentration at the wall is determined by
the Eckert-Schneider condition, equation (6a).
For the case without second-order effects, we
get

(79a)

From equations (79) and (8()), it can be seen that
mand C,,, are equal to zero for v, = 0(f,, = 0).
This is the case for no mass transfer ; the ratios
m/m, and C,/C,,,. however, have finite values.

Cfw()

3. RESULTS AND DISCUSSION

We have determined the second approxima-
tion to the solution of the Navier-Stokes equa-
tions for incompressible, three-dimensional flow
in the neighborhood of a stagnation line on a
swept cylinder.

We used the methods of matched asymptotic
expansions to determine the coefficients in
expansions for the flow velocity components,
pressure, temperature, cross flow at the wall,
and wall concentration. In this way, we studied
the effect of wall mass transfer on the second
approximation coefficients for longitudinal
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curvature and displacement. In addition, we
obtained a first approximation to the three-
dimensional flow by introducing a sweep angle
in the flow which brings in the transverse
velocity, w It should be noted that this velocity,
as well as all the other boundary-layer charac-
teristics, are independent of z.

The results of the matching procedure and the
numerical calculations are given in equations
(67)-(80), which present the numerical coeffici-
entsfor the second approximation inlongitudinal
curvature and displacement. The numerical
values of all functions at the wall are listed in
Table 1. Since the Reynolds number contains
U, = V cos ¢, the effect of the sweep angle can
be obtained directly. Since all coefficients in
equations (67)72) are positive, the direction of
the second-order effects on the boundary-layer
characteristics can be seen from the signs
preceeding the coefficients. If we assume that
U,, is negative, as indicated above, then all of
the second-order effects are negative, i.e. lead to
decreasing values of the characteristics. The
sole exception is the longitudinal curvature
effect on the wall concentration. This reduction
reflects the increase in thickness of the boundary
layer due to centrifugal forces resulting from the
convex wall curvature. The reduction of p, — p,,
means an increase in the value of the wall
pressure p,, with respect to the inviscid value
Pwo- The explanation is as follows. In the
inviscid solution, the pressure gradient per-
pendicular to the wall is present because of the
convex curvature of the wall. This pressure
gradient at the wall is positive because of the
streamline curvature near the wall. When
viscous forces are taken into account, the
centrifugal forces near the wall are reduced, and
hence also is the pressure gradient. Since the
matching condition with the outer flow remains
the same, the pressure at the wall must increase.

All the coefficients in equations (67)(72),
with the exception of C,, are dependent on the
mass-transfer parameter

Com fum — LR

Uco \/(Ul 1).

81)

Figures 2-4 show the variation of the second
approximation coefficients with wall mass trans-
fer, C,, for suction and injection. Figure 2 shows

2.5
\ /c3d
" \
C3c
C}d\
1.5 S
C 1c
1o 1 i i )
0.6 0.4 ~0.2 Y 0.2 0.4 .6
injection Cm Suction

FiG. 2. Effect of mass transfer on the second approximation
coefficients for longitudinal curvature and displacement
[see equations (67) and (69)].

the variation of longitudinal shear stress and
wall pressure. Transverse wall shear stress, heat
transfer (Pr = 0-7), and mass transfer (Sc = 0-7)
at the wall are plotted in Fig. 3. Finally, Fig. 4
shows the coefficients for the concentration at
the wall. The absolute values of the coefficients
given in Fig. 2 are about an order of magnitude
greater than those in Fig. 3, but their range of
relative variation with respect to mass transfer
is much less. The values shown in Fig. 4 have
the same order of magnitude as in Fig. 3, but
exhibit much less relative variation with mass
transfer.

Inspection of Figs. 2 and 3 show that in-
creasing mass transfer increases all second-
approximation coefficients. This results from the
increase in boundary-layer thickness due to
injection. Since the second-order curvature
effects are proportional to /R, it is clear that
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FiG. 3. Effect of mass transfer on the second approximation

coefficients for curvature and displacement [see equations

(68), (70) and (71)].
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FiG. 4. Effect of mass transfer on the second approximation
coefficients for curvature and displacement {see eguation
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they will increase with injection. Second-order
effects due to displacement obviously will show
the same dependence on mass injection as does
surface curvature. Increasing the boundary-
layer thickness will result in greater displace-
ment effects.

Figure 4 shows that coefficients for the wall
concentration exhibit the opposite tendency;
ie. they decrease slightly with increasing wall
mass injection. The concentration is obtained
from the Eckert-Schneider condition, and the
tendency for the coefficients to decrease in-
dicates that the increase due to the first-order
wall concentration is greater than that contri-
buted by the additional terms due to second-
order effects. The coefficients for C,, = 0 in this
report are identical with those found by Van
Dyke [3].

It must be re-emphasized here that the cal-
culation of the coefficient U ,,, which determines
the magnitude of the displacement effect at the
stagnation point, involves the global solution
to the potential flow over the effective body,
which consists of a boundary layer and an air-
foil. This calculation has been performed by Van
Dyke for a semi-finite body (parabola), and by
Devan for the Rankine body. For the case of a
closed body, however, it is not at all clear just
how the coefficient can be determined, since the
wake and the separation region can have a
considerable effect on the effective body shape
because of body and viscous layers.
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EFFETS DU TRANSFERT MASSIQUE SUR LES SOLUTIONS D'ORDRE ELEVE DE
LA COUCHE LIMITE: BORD D'ATTAQUE D'UN CYLINDRE

Résamé— On étudie I'écoulement incompressible tridimensionnel prés de la ligne d’arrét d’'une surface
cylindrique. La méthode du développement asymptotique est utilisée pour obtenir une extension des
solutions des équations de la couche limite de Prandtl, par exemple la seconde approximation des
équations complétes de Navier-Stokes, On détermine les effets de second ordre dus a la courbure de la
surface et au déplacement sur les composantes de la vitesse, sur la pression. la tension tangentielle, le
transfert thermique et massique.

On montre que les effets de 14 courbure longitudinale et du déplacement sont négatifs en entrainant
des valeurs décroissantes des caractéristiques de la couche limite: tension tangentielle, transfert thermique
et massique. Ce comportement résulte de 'action des forces centrifuges dues a la convexité de la surface.
Une injection massique a la paroi augmente tous les effets du second ordre. Ceci résulte de 'épaississement
de la couche limite par I'injection. L'effet de courbure révéle uniquement une influence opposée sur la
concentration pariétale. Il augmente la concentration 3 la paroi et cet accroissement est réduit par

I'injection.

MASSENTRANSPORT-EFFEKTE AUF GRENZSCHICHTLOSUNGEN HOHERER
. ORDNUNG
DIE ANSTROMKANTE DES UMSTROMTEN ZYLINDERS.

Zusammenfassung—Es wurde die dreidimensionale inkompressible Stromung an der Staulinie einer
umstromten zylindrischen Fliche untersucht, Es wurde die Methode der schrittweise asymptotischen
Expansion genutzt, um eine Erweiterung der Losung der Prandtl-schen Grenzschichtgleichungen zu
erhalten, d.h. eine zweite Niaherung der vollen Navier-Stokes’schen Gleichungen. Es wurden die durch
die Oberflichenkontur bedingten Auswirkungen zweiter Ordnung auf die Geschwindigkeitskomponenten,
den Druck, die Schubspannung, den Wirme- und den Stoffibergang bestimmt.

Es wurde gezeigt, dass die Krimmung der Oberflichenkontur in Lingsrichtung sich vermindernd
auswirkt, d.h. die Werte charakteristischer Grassen in der Grenzschicht nehmen ab: die Wandschubspann-
ung, der Wirme- und der Stoffiibergang. Dieses Verhalten ergibt sich durch die Ausbreitung der Grenz-
schicht normal zur Wand durch Zeatrifugalkrifte aufgrund der konvexen Oberflichenkriimmung.
Gesteigerte Massenzufuhr an der Wand erhoht alle Effekte zweiter Ordnung. Dies ergibt sich durch die
Verdickung der Grenzschicht durch die Massenzufuhr, Nur die Auswirkung der Kriimmung auf die
Wandkonzentration zeigt ein anderes Verhalten. Sie fithrt zu einer Erh6hung der Wandkonzentration und
diese Erhohung ldsst sich durch Massenzufuhr verringern.

BJAUAHUE YUYETA INEPEHOCA MACCbhI HA PE3YJIBTATHI PEIIEHUs
YPABHEHUN ITOMPAHMYHOLO CJIOA BBLICOKUX ITOPSAJIKOB
OBJIACTb NEPEJHER KPUTHUUECKON TOUYKHM MONEPEYHOONTEKAEMOIO
HWJIUHIPA

Agnotamua—IlpoBefeHo MCCAeHOBAHME TPEXMEPHOIO HECHUMAEMOrO [10TOKa  BOMMSH
KPUTHUECKOR TOUKHM [ONEPEUHOONTERAEMOTD HIHHpa. Onpejennerca BinsAnue sdexron
BTOPOTO NOPAAKA KPUBHM3HBI TOBEPXHOCTH H BLITECHEHHH HA KOMAOHHTH CHODOCTH, Ja-
BIICHUA, HANPAKEHUA CABUIA M TeIJIO-U MacCOooOMeH.

Ilokazano, 4To BJHAHHE NPOAOJBHOM KPUBHIHB N BLITECHEHMA OTPRIATENBHO, T.K. OHO
[IPUBOMUT K YMEHBIEHIIO XaPAKTePUCTIK TOTPAHUYHOTO €108 (HANpAKeHus, RoadgduitenTon
Tpenua). DTO MPOMCXOXUT B PERYABTATE YTOJNUEHHH NOIPAHUYHOIO CHOA 101 BozjeHCTIeN
HeHTPOOEKHBX CHJI, BOZHHKAWOIINX H3-33 TOTO, YTO IOBEPXHOCTE HWMeeT BBIIYKIYIO KOH-
¢urypauuio. YBeandenue BIYBa HA CTEHKe BEJET K POCTy Beex sQerTos BTOpOro NOpHiRA,
T.K. BAYB NpPABOAUT K YBeNHYEHHIO TOJUMHBL 1I0rpaHudHoro cuos. BinfAHMe RPUBU3HLL HA
KOHIIGHTPANMI0 HA CTEHKe IPOTUBONOJOMKHO MO CBOEMY BBIUCONUCAHHOMY XaparTepy :

OHa VBEIMYUBAET KOHUEHTPAIMHU, B TO BPEMA KAK BIYB TOPMOBUT HTO YBEIUUCHUE.
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